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We make a rigorous study of the spectrum of the Rayleigh piston. Our main 
results are that one is dealing with a trace-class perturbation for all values of the 
mass ratio 3' between test particles and heat bath particles and that apart from 
the ground state the discrete spectrum is empty for 7 sufficiently near 1. We also 
show that the so-called Lorentz limit (Y ~ oo) is mathematically well defined 
and derive a qualitative statement on the discrete spectrum of the scattering 
operator for 1, >> 1. 

KEY WORDS: Rayleigh piston; scattering operator; trace-class perturba- 
tion; discrete spectrum; Lorentz-limit. 

I. I N T R O D U C T I O N  

In  recent years a considerable amoun t  of effort has been spent on a classic 
of statistical mechan ic s - - the  Rayleigh piston (i.e., a one-dimensional  array 
of test particles of mass M colliding at r a n d o m  with heat  ba th  particles Of 
mass m at temperature T ) - - i n  an a t tempt  to come to grips with its full 
mathemat ical  complexity (for a recent extensive bibl iography of the prob- 
lem and  its ramifications see Ref. 1). 

However,  a great deal remains to be done even as regards qualitative 
properties of the model.  With  this paper  we embark on a program of 
studying the qualitative and quantitative features which result f rom spectral 
analysis of the scattering operator  canonical ly associated with each value of 
the mass ratio Y = m / M  between the two types of particles. Impor tan t  first 
results have been obtained in Ref. 2. Since the model  itself and the way of 
getting f rom the physics to the mathematical  per turbat ion problem studied 
below have been described there and in numerous  other texts (see, e.g., the 
review in Ref. 3), we shall not  say anything about  this here and shall f rom 
the start focus at tention on the purely mathemat ical  aspects of the problem. 
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In Section 2 we shall define the problem, fix notation, and prove some 
technical results. In the following two sections we prove the main results of 
this paper: firstly, that in fact we are dealing with a trace-class perturbation 
for all values of ,/; secondly we prove a conjecture put forward in Ref. 2, 
namely, that for a whole interval of values of y containing the number 1 in 
its interior the only discrete eigenvector of the perturbed operator is the 
ground-state vector (which is unique). In the final section we then make a 
few remarks on the limits zero and infinity of ~/ and prove some basic 
results on the so-called Lorentz limit which does not seem to have attracted 
much attention so far in contrast to the Brownian limit. 

The methods employed in this paper are quite straightforward and 
elementary; this, o~ course, does not mean that all pertinent questions can 
be answered in this fashion. The manipulation of improper integrals, taking 
of distributional derivatives, etc. will normally be done without explicit 
justification in order to keep the paper short; the interested reader can 
work things out for himself consulting standard textbooks if necessary. The 
background material on Hilbert space operators, sesquilinear forms, and 
their perturbations can all be found in Ref. 4, Chapters V, VI, and X. Let 
us finally mention that the three-dimensional analog of the Rayleigh piston 
(i.e., the neutron transport problem) has been studied in a similar way in 
Ref. 7. 

2. PRELIMINARIES AND TECHNICALITIES 

With ), defined as above define/x := (1 + ,{)(2y)- l, i.e., ), = (2/~ - l) 1 
and let 

Z(x)  := e -x2 + 2x erf(x) with erf(x) =foXe-'2dt 
Then Z is the corresponding (self-adjoint) multiplication operator on L 2 
(N). Next define G:L2--> L 2, an integral operator with kernel: 

g,(x,y) =/x21x - y l e x p [ -  l (x2  +.y2 )_  / x ( ~ -  1)(X _y)2 ]  (1) 

= ~2lx -ylexp[-2(~ - �89 +y2) _ ~(I - #)(x +y)2] (I') 

The Rayleigh equation then reads in suitably chosen variables: 

= ( z - ) , , (  t , x )  ( , )  

(see Ref. 2, Section 2, for a derivation of this). So we need to study the 
spectrum of the operator Z-G~,:L2(N)oL2(R) for /~ ~ ( 1 / 2 ,  oe), The 
region/~ > 1 (/~ < 1) is then called the Rayleigh (Lorentz) regime; the form 
(1') for G, will turn out to be useful for studying the Lorentz regime. 

Let us begin by briefly noting some properties of Z(x). It clearly is a 
C ~ function and Z(x)[x> 0 is strictly monotonic since Z'(x)= 2erf(x). Its 
spectrum as an operator in L 2 is thus absolutely continuous in (1, oe) with 
no gaps and by the monotonicity it is easy to calculate explicitly the 
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Radon-Nikodym derivative of the measure dl~f(X ) in the spectral resolution 
(f, Z f )= f~Xdl~f(X) (however, in this paper we shall have no occasion to 
make use of this). 

Now G, clearly is Hilbert-Schmidt with norm II G~lf~s = ~,/%~4. It then 
follows from standard results that Z - G,, which by its very construction is 
a positive operator, must have discrete spectrum in [0, 1) with at most the 
one accumulation point 1; in this special case, however, there is no 
accumulation point at all. (2) However, the question whether the perturbed 
operator has any discrete eigenvalues embedded in its continuous spectrum 
or worse, whether there is in fact any continuous spectrum for a given/~ 
remains open, since a Hilbert-Schmidt perturbation can do all kinds of 
nasty things to the spectrum of the unperturbed operator (Ref. 4, Theorem 
X.2.1). The most straightforward way of tackling this problem consists in 
proving that the perturbation is trace class since we know that trace-class 
perturbations can do nothing to the absolutely continuous spectrum (Ref. 
4, Theorem X.4.4). We shall prove it in the next section (the proof is 
somewhat nontrivial for/~ < 1)--thereby showing that for all/~ > 1/2 there 
is an absolutely continuous spectrum in [1, oo). 

Next we know that Z - G, has a ground-state (eigenvalue 0), namely, 

N~(x) = ~r exp[ - (/~ - 1/2)x2]. 

whose existence stems directly from the physics and whose uniqueness 
mathematically is a direct consequence of the fact that G, is a positivity 
preserving operator. (5) The next thing to do is thus to find out how many 
discrete eigenvalues there are for a given/z and what their multiplicities are. 
Of this program we shall answer only one qualitative question proving the 
absence of discrete eigenvalues other than the ground-state value for a 
whole interval /z I < 1 </~2; this was conjectured in Ref. 2, where also a 
nonrigorous argument was given. That the conjecture is true for F = 1--the 
only case where a complete solution is known--is elementary and will be 
rederived below. Let us now prove some preliminary results. Consider the 
problem stated above. To show that the discretum is empty except for the 
ground state we must show that (f, (Z - G~)f) ~> Itfll 2 for all f E L2(R) (-I 
N ~  so that we will have to estimate the matrix elements (f, G j )  by 
(f, ( Z -  1)f). For this we need a lower bound in closed form--if  possible 
by a function easily manipulated--for the quantity Z(x) - 1. This we do in 
the following lemma. 

Lemma 1. F o r p  >/ 1/6 we have Z(x) - 1 >1 x2e -px2 for all x E R. 

Proof. By symmetry we need only consider the range x > 0. Expand- 
ing everything in power series we get 

Tp(x) := Z ( x ) -  1 - x 2 e  -px2= ( p -  1/6)x4 + ( 1 / 3 0 - p 2 / 2 ) x 6 +  . . .  
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showing that for x sufficiently near the origin the left-hand side (1.h.s.) is 
positive for p > 1/6. Thus it is sufficient to show that the derivative of the 
1.h.s. which reads 2 [e r f (x ) -  xe -ex2 +px3e -px2] is positive for all x > 0. 
Since it is easily seen to be positive for very large and very small x we need 
only show that it is either monotone increasing or has just one extremum in 

�9 1 px 2 x > 0. This in turn will be the case lff r e  [Tp(x)]xx = e ( e - I )~2-  1 + 
5/9x 2 -  2/023( 4 is either everywhere positive or has exactly one zero; for 
p > 1 /6  it clearly has at least one so that [Te(x)] x cannot be monotonic�9 
The latter will be the case iff there is a single maximum, i.e., exactly one 
zero of 2(p - 1)e (e-l)x~ + 10p - 8p2x 2 in x > 0. It then is enough to show 
that 4(p - 1)2e ( e - l )~  - 16p 2 is either < 0 for all x > 0 or has exactly one 
zero. The first case obtains fo rp  >/ 1/3, the second case for 1 /6  < p  < 1/3�9 
Arguing backwards we get the desired result for p > 1/6 and thus also for 
p = 1/6 by continuity�9 

Lemma 2. Let P denote the orthogonal projection onto the subspace 
{ e-x-'/2} • of L z(N). Then PGtP is negative definite. 

Proof. Let f ~ { e-~V2} • then e -~ /2 f (x )  is the derivative F'(x) of 
an L 2 function F(x). Integration by parts and use of the formula 3xOylx - 

y l  = - 2 ~ ( x  - y )  yields (f,  GIF ) = - 211FI1~. 

Corollary. .G 1 has only one positive eigenvalue. 

Proof. Suppose there are two orthogonal, real, normalized eigenfunc- 
tions gl, g2 for G 1 with positive eigenvalues XI,X 2. Then the two- 
dimensional subspace span (gy, g2) must contain a nonzero function h(x) 
= agl + fig2 E {e-XV2} • and a , /3  ~ I~. But then 

( h ,  G , h )  = az~tlll g~l[~ +/32~k211 g21122 > 0 

a contradiction. 

Remark�9 From the lemma it immediately follows that the ground 
state is the only discrete eigenfunction in [0, 1) for Z -  G 1 . The corollary 
immediately leads to the interesting question whether G, has finitely or 
infinitely many eigenfunctions with positive eigenvalue for ~t v~ 1. In the 
first case one would get an upper bound for the number of discrete 
eigenfunctions of Z - G, from consideration of G, alone. 

3. THE PERTURBATION IS TRACE CLASS FOR ALL VALUES OF V 

Theorem 1. G~ is trace class for all/~ ~ (1/2,  oo). 

Proof. We shall have to consider the three cases/~ > 1, ~ < 1, ~ = 1 
separately. 
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(1) Let/~ > 1. Take the second distributional derivative of the function 
- -  C ~ X  2 [x]e - -where  from now on we shall abbreviate and set a = #(/~ - 1)--to 

get 

26(x)  - 6alxle -~x~ + 4a2lxl3e -ax2 

From this it follows that the Fourier transform ~,(p)  of Ixle -~x2 is bounded 
by p -2. M(a) ,  M ( a )  E •. Define functions 

g~>(p) :-- I L(p) I I /2 ;  ~2(~)(p) := sign[ g~(p)]  g~) (p )  

By the preceding argument both functions are in L2(R); denoting by 
g~'~)(x), g(2~)(x) their inverse Fourier transforms we thus get that both 
kernels e - ~ / 2 g ~ ' ~  y);  g(v'~ - y ) e  -y2/2 define Hilbert-Schmidt opera- 
tors. Since their convolution product is proportional to g~,(x, y)  the latter 
defines a trace-class operator. 

(2) The previous method clearly does not work in the Lorentz regime. 
So fo r / ,  < 1 we try to find two HS operators whose product has the same 
growth as g~(x, y).  From the formula 

;j_~ [x-  yle-y2/2dy-- Z(x) 
O0 

we guess that kernels of the form 

K l ; = e-r'x2-'~(x-Y)2lqx + PYl; K2( x, Y) :  = e-r2y2-l~(x+Y)2 

with a,/3,  r], r 2 > 0, p, q E R, might do the job. The product kernel becomes 

P e x p - ( r , + a ) x 2 - ( r 2 + / 3 ) z 2 +  - ~ ; - ~  K~ o X2(x,z) - ~ + r 

• t + x -- e - t ~ d t  

and we see that in order to have the integral on the r.h.s, a function of 
x - z we need 

pa + q ( a + /3 ) _ /3 r q _ / 3 -  a 
p(~ + /3 ) , /2  (~ +/3)~/~ p /3 + 

Fixing tentatively p = a +/3, q = /3  - a we get for the product kernel 

( , ,x z,)exp i~ o K2(x, y) = z (~ + B)I/2 

• (X -F Z) 2 --  rl x 2  -- r2 Z2 
a +  /3 
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We now set r I = r 2 = 2s2,afl/(e~ +/3)  =/ t (1  - /~) ;  fl/(cx + fl)1/2 = .ff-t/2 
[this is easily seen to be possible with a , /3  > 0 for al l / t  ~ (1/2,  I)], and it 
follows that the kernel 

exp[ _2s2(x  2 + y 2 ) _ / , ( 1  - / x ) ( x  + y )2 ] .  ZOr-,/Z(x _ z)) 

defines a trace-class operator. Consider now the difference G. - K 1 o K2; it 
has a kernel of the form exp[ -2s2(x  2 +y2) ]cp (x -y )ep (x  + y) with q~(~) 
= I n l -  e -" ( l -~ )~  

Now we write e x p [ -  tt(1 - ~)(x + y)2] = exp[/t(1 - / ~ ) ( x  - y)2 _ 
2 / t ( 1 -  ff)(x 2 +y2)] so that the kernel of G ~ -  K 1 o K 2 actually has the 
form 

Thus it only remains to show that ff,(p) ~ LI(~) r"l L2(R) because then we 
can apply the arguments of part one to show that the difference in question 
is trace class, too, which makes G, trace class as required. 

However, for x >~/-~- we have 

(--~-) 2----~-x( ~ e-t2dt<e-X2/~+ I Z  - xl <.  -xV= + 7g Jx/  

= (1+ -~ )e -x:/= 

2x f ~  te-t2dt 

Since fo r / ,  E (1/2, 1) we have/ , (1  - / , )  < 1 /4  we see that F~(z) is falling 
off exponentially and the theorem holds in the Lorentz regime. 

(3) Neither method works for ~ - 1. However, from Lemma 2 we see 
that all we have to do is to find a suitable complete orthonormal sequence 
of functions in L2(R) 7) { e -  x2/2 ) • { % (x) }. E ~, say, and to show that 

oo oQ 

2 (~n'eGle~n)= 2 (~n, Gll~n) 
n = l  n = l  

is finite because if PG1P is trace class, G 1 is, too, since their difference is a 
degenerate operator. A suitable system of functions is readily found, 
namely, the Hermite functions: 

~ . (x)  = (,~'/22"n!)-1/2eX2/2(~xe-X2), n >/ 1 

By Lemma 2 we get 

( ~ n ,  G l t ~ n )  = - 2(~ 1/22"n ! ) - '  l iar"-' e -x~ 1122 

which after Fourier transformation yields 
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To show that ~ ~  < oo we compute 

an _ n + l  _ 2 n + 2 _ 1 +  3 /2  > 1 +  3//2 
a,+ l ( 2 n -  1)//2 2 n -  1 n -  1//2 n 

Using now Kummer's criterion for convergence (6) with c = 0, a = 1//2 we 
get the assertion and the theorem is proved. 

Remark. Knowing now that G, is trace class we find that Tr(G~) = 0 
for all /z ~ ( ! ,  ~ )  (Ref. 4, Example X.I.18). The method of proof also 2 
yields an upper bound for the trace norm of G,, but having no use for it we 
shall not give it. 

4. THE DISCRETE S P E C T R U M  NEAR ~ = 1 

This section is entirely devoted to the proof of the following theorem. 

T h e o r e m  2. There exis t /q  < 1 < ~t: such that for/~ E (/~,/~2) and 
f ~  NI~ we have ( f , (Z -  G,.)f)> Ilfll~, i.e., the ground state is the only 
discrete eigenstate of Z - G/, for such #. 

Proot Since N, is even it turns out to be convenient to treat even 
and odd functions separately. For f real we write 

(f ,  G j )  =  ,2f_ f f(x)e-(1/2 + a)X2lx - y [  cosh(2axy) f(y)e -(1/2 +,~)y2 dx dy 

+ li2f_~176 f f(x)e-('/2+'~)X2lx- y[ sinh(2axy)f(y)e -(1/2 +~)Y2dx dy (2) 

For f odd (even) we expand cosh(2axy) [sinh(2axy)] and crudely estimate 
setting e&(x) := f(x) exp[ - (�89 + a)x 2] 

f f~(x)x"[x - y[~(y)y" dx dy 

2 f l o(x)lx"+' f l o(y)y"l*y 

<. 211fllX[fx "+ e-"+ ~176 

= 2]lfll (1 + 2a )  - ( " + ~  

M(n!)(1 + 

Thus we see that for f odd (even) the first (second) summand on the r.h.s. 
of (2) can be evaluated term by term for all a > - 1 / 4  and by Lemma 2 
gives a negative contribution for all a > - 1//4 if f is odd and for a > 0 if f 
is even. The case " f  even and a < 0" needs a separate argument. 

In order to rid ourselves of various complications it is convenient to 
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reduce the respective remainders first to integration over the first quadrant 
and then by symmetry to integration over the wedge-shaped region 0 < y 
< x. For f odd this gives 

2 o o  x . 8~ ~0 dxx~a(X) fo slnh(2axy)cp~(y)dy 

whereas for f even we get 

8;  dx fo cosh(2 xy) o(y)dy 

In the first case we estimate by means of the simple formula sinh(x) < xe ~, 
x / >  O, and we get for a > 0 

f ~  dx x~(x) foXsinh(2axy)%(y) dy 

X X <" 2'~ foX%~ fo yee~lm~(Y)IdY 

< 2afo~x2e-X2/zlf(x)l dx foXe-'~(x-Y)~ye-YV2[f(y)l dy 

• fo~X2e-a(1/2-q)~f2(x)dx, q E (0, 1/2) 

and analogously for a < 0: 

I fo~176 dx foXsinh(2axy)%(y) dy I 

< 2[alfo~X2e-(l/2+ 2~);If(x)idx foXe-N(x-Y)ye -('/2+ 2'~)/]f(y)l dy 

~r f~176 q E (0,�89 + 2) 
< 21al l--~q2 ./0 

Since for a in a neighborhood of zero we can fix q this estimate meets all 
our requirements. It also takes care of the case f even and a < 0 because 
then the second term on the r.h.s, reads 

-8.2fo~176 dx %(X) foXysinh(2axy)%(y)dy 

In a similar way (with different constants, of course) we can estimate the 
expression 

fo ~176 dx x~,~(x) foX[ cosh(2axy ) - 1]%(y) dy 
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for f even. The only problem then remaining is presented by the term 

fo~ dX x%(X) fooX%(y)dY 

It is here that the condition f ~ N ~  enters in a very specific way. We write 
K(x) := f~%(y)dy and define K ( m ) : =  f~%(y)dy, a finite number and we 
find 

OO 1 OO O0 

foo - foo foo x%(x  x 
the first term on the r.h.s, being finite since K ( x ) -  K(m) is a rapidly 
decreasing function. In order to estimate the second term we use the 
following simple inequality: for b > a > 0, x > 0 we have 

e - ax2 -- e - bx2 ~ qxe- 2x2 

with 

q = [ 2 ( b -  a)/e] '/2. 

(Proof: the assertion is equivalent to qx + e -(b-a)x2 - 1/> 0; this holds if 
q - 2x(b - a)e -(b-'Ox2 >1 0 for all x > 0; and therefore if the supremum of 
2x(b - a)e -(b-a)x2 which is [2(b - a)/e]]/Z--is not larger than q.) 

Now setting a := ~t - 1/2, b := a + 1/2 the assumption f E N ~  yields 

[K(oo)[ = [ fo~[e -ax2- e-bx '] f (x)dx[>( 2 ),/2[._ 1] fo~Xe_aX2lf(x)[d x 

I~ 1 ( f, xZe-aX2f] (~e-aX2dx] 1/2 

and even easier for the other factor 

l fo Xe- X (x)axl< fo Xe-~ 
which gives 

I ~ -  l[ [ qT \I12 2 [K(~176 x tpa(x )dx[  <<. ~ ~ ~ ) ( f~x2e -ax - f )  2 

The contribution from this term in modulus is thus not larger than 

q 1/2 2 
4 " 2 [ " - 1 1 [  2e(2~- -1)  J (f'xZe-~X-f)2 

Putting everything together it is now clear that in a suitable neighborhood 
of a = 0 we have the inequality of the theorem. 

Romark. We shall not give a numerical value for #~ and/~2 since it is 
clear from the proof that this value would be nowhere near the true values. 
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However, there are innumerable ways of extracting negative parts from 
(f, Guf ) so with an appropriate split one should be able to do much better 
than we did here by canceling some of the positive (i.e., bad) contributions 
against some of the negative ones. The problem of getting numerically 
satisfactory bounds for /x~,/~2 or, better still, convergent expansions for 
these values will be taken up in a future paper. 

5. THE RAYLEIGH AND LORENTZ LIMITS 

We ask: to which limit operators and in what topological sense does 
Z - G~ converge in the case/~ ~ oo (the Rayleigh limit) and/z ~ 1/2 (the 
Lorentz limit)? Let us remark here that these limit operators (if they exist) 
are not of direct physical interest as generators of interesting processes; but 
the structure of their spectra tells us what the spectrum of Z - G~ looks like 
--qualitatively--for either # >> 1 or /~-  1/2 << 1. Since we are at present 
only concerned with the qualitative aspect of the spectrum this abuse of 
language seems to be justified. The first case is trivial since /x2e -~(x-y)2 
converges to a ~ kernel if/~--> oo and the { G~} ,>1 are a uniformly bounded 
family of operators so Z - G, converges strongly in the generalized sense to 
the multiplication operator 2x eft(x) (Ref. 4, Chap. 8). Clearly 2x erf(x) 
has absolutely continuous spectrum in (0, oo) with no gap; so from the 
operator theoretic point of view there remains only the problem of deter- 
mining the "rate of convergence" of the spectra of Z -  G,, i.e., how fast 
do the discrete eigenvalues fill out the interval (0, 1) (Ref. 4, Theorem 
VIII.I.15)? 

However, the Lorentz limit, which does not seem to have attracted 
much attention so far, turns out to be a much more subtle affair; so far we 
have only very general results which we summarize in the following 
theorem. 

Theorem 3. Denote by G1/2 the operator defined by the kernel 

g~/2( x, y )  = ~ Ix - y l e - (X  +Y)2/4 

which is an unbounded, symmetric operator on some domain, $ (•) say. 
One then has an operator bound for f E $ : 

IlG1/Efll 2 < All f l l  2 + I[Zfll 2 

so for the closure of Gl/z (denoted by GI/:) we have | D @(Z) and 
Z -  G1/2 is essentially self-adjoint on every core for Z. Furthermore for 
f ~ g we have 

s -  lira ( Z - G , ) f = ( Z - G 1 / 2 )  f 
/L--> 1/2 
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and so here also we have strong convergence in the generalized sense (Ref. 
4, Corollary VIII. 1.6). 

Proof. We first compute the iteration kernel of G2/2 which is 

: e " dL iI - (x + " ( x  - , 

then for any function in g (R) we get 

1 (f, G~,~f) <. ~ f_= f dx a: If(x)f(~)le-"-:)Vff_~ 
• I[.,v - (x + ~ ) ]~ -  k(x - z)21e-YY2dy 

(2~r)1/2 f f dx dz If(xff(z)l e-(x-')218 
< 1---(-- 

• ~- + (x + z) 2 + 1 

(2~r)'/2 f f dx az If(x)f(z)l e-(x-:)V8 < i-----6-- 

x [ l + �88  
If therefore we denote by U l the operator defined by the kernel 

e-(X-Z):/8[1 + �88 z) 2] (U, bounded) 

and by U 2 the operator defined by the kernel Ixzle-(X-Z)~/s we get 

(2rr) 1/2 (2rr) 1/2 
(f'Gffl2f) <~ i-6 (IfI, U, Ifl)+ T ( I f I ,  u21ft) 

(2~-) 1/2 (27r)i/2(8~r) 1/2 
< ~ 11U, ll llfll~ + 4 l l(x I f(x))lh2 

it follows that  II Gw2fll 2 <~ Ilfll 2 + IlZfll 2 the required operator bound  (Ref. 
4, Theorem V.4.6). 

The second part of the theorem is easily proved by inserting the 
multiplication operator (1 + x2)-2(1 + x2) 2 between G, and f E $ and 
noting that the family of operators {G~(1 2 -2 + Y  ) }~Efl/2,0 is a family of 
uniformly bounded operators which strongly converges for/,--~ 1/2. 

A final remark: it has been conjectured that the spectrum of Z -  G~ 
should be the set {0} tO [1, oe) for all / ,  ~ (�89 1). The previous result shows 
that this cannot be true. For, suppose it were, by Ref. 4, Theorem VIII.I.14 
we would have Sp(Z - G1/2) C (0} U [1, m), where Z - G I / 2  denotes the 
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self-adjoint closure of Z - G1/2- If now q~ were an eigenvector of Z - G1/2 

with eigenvalue 0 we would by the strong convergence of the resolvents 
(Z  - Gv + 1)-1 to (Z - GI/2 + 1)-1--find that 

IIN~- ~11~0 f o r / ~  1/2 

So there is no such eigenvector and therefore if the assumption were true 
- - the  spectrum of Z - G1/2 would actually be in [1, ~ ) .  Thus, however, it 
is not because we have by direct computation 

( N ~ , Z  - G I /2N~)  = [(2pt - 1)/2/*] '/2 

converging to zero for #---> 1/2. So something has to happen with the 
spectra of the Z - G~ f o r / , - +  1/2 although what this something is we do 
not yet know. 
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